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We develop a lattice model for the splay flexoelectric effect in nematic liquid crystals. In this model, each
lattice site has a spin representing the local molecular orientation, and the interaction between neighboring
spins represents pear-shaped molecules with shape polarity. We perform Monte Carlo simulations and mean-
field calculations to find the behavior as a function of interaction parameters, temperature, and applied electric
field. The resulting phase diagram has three phases: isotropic, nematic, and polar. In the nematic phase, there
is a large splay flexoelectric effect, which diverges as the system approaches the transition to the polar phase.
These results show that flexoelectricity can be a statistical phenomenon associated with the onset of polar
order.
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I. INTRODUCTION

Flexoelectricity is a coupling between elastic deformation
and electrostatic polarization in a liquid crystalline medium.
In general, a splay or bend deformation of the nematic direc-
tor leads to an electrostatic polarization, which can be ob-
served as a macroscopic dipole moment of the liquid crystal.
Conversely, an applied electric field induces an electrostatic
polarization, which leads to a combination of splay and bend
distortions in the nematic director. Since its discovery in
1969 by Meyer �1�, the flexoelectric effect has drawn great
interest because of its possible applications �2,3� in strain
gauges, transducers, actuators, micropower generator, and
electro-optical devices.

There have been many experimental and theoretical stud-
ies to determine the flexoelectric coefficients of nematic liq-
uid crystals �4–18�, using a range of different approaches.
For typical calamitic �rod-shaped� liquid crystals, the splay
and bend flexoelectric coefficients are in the range of 3–20
pC/m. However, in recent experiments, Harden et al. �2,3�
found that bent-core liquid crystals have a surprisingly large
bend flexoelectric coefficient, up to 35 nC/m, roughly three
orders of magnitude larger than the typical value. With this
large bend flexoelectric coefficient, bent-core liquid crystals
may be practical materials for converting mechanical into
electrical energy.

For theoretical physics, a key question is how to explain
the large flexoelectric effect found in bent-core nematic liq-
uid crystals, so that it can be exploited for technological
applications. Our conjecture is that the large flexoelectric
effect is a statistical phenomenon associated with nearby po-
lar phase. Near a polar phase, a nematic liquid crystal is on
the verge of developing spontaneous polar order and hence
any deformation of the director should induce a large polar
response. To test this conjecture, we would like to build a
model with nematic and polar phases and determine the be-
havior of flexoelectric effect as a function of temperature
above the nematic-polar transition. In this paper, we begin
the study by investigating the splay flexoelectric effect in a

system of uniaxial pear-shaped molecules. In a subsequent
paper, we will investigate the more complex case of bend
flexoelectricity in bent-core liquid crystals, as in the experi-
ments.

To study the splay flexoelectric effect, we generalize the
Lebwohl-Lasher lattice model of nematic liquid crystals
�19�. In the original Lebwohl-Lasher model, each lattice site
i has a spin ni, which represents the local nematic director,
with the symmetry ni→−ni. In our generalization, the spins
represent the orientations of pear-shaped molecules, which
do not have that symmetry. For that reason, the interaction
between neighboring spins includes three terms—one term
favoring nematic order, another term favoring polar order,
and a third term that couples polar order with splay of the
nematic director. With this interaction, we find a phase dia-
gram with isotropic, nematic, and polar phases, as illustrated
in the snapshots of Fig. 1. The nematic phase has a flexo-
electric effect, which increases as the system approaches the
polar phase. Thus, this calculation demonstrates explicitly
that the flexoelectric effect can be a collective, statistical
phenomenon, which is strongest near the transition to a
phase with spontaneous polar order.

The plan of this paper is as follows. In Sec. II, we set up
the theoretical framework leading to the model interaction
and discuss the relevant order parameters. In Sec. III, we
present the Monte Carlo simulation methods and results, for
both the phase diagram and the flexoelectric effect. In Sec.
IV we present a mean-field theory for this model and com-
pare the simulation results with the mean-field approxima-
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FIG. 1. �Color online� Snapshots of the simulation results in the
three phases: �a� isotropic. �b� Nematic. �c� Polar. The software
V_Sim is used �20� and the color of each molecule represents the
polar angle � away from the z axis.
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tion. Finally, in Sec. V we discuss and summarize the con-
clusions of this study.

II. MODEL

In this study, our goal is to simulate the splay flexoelectric
effect in a system of uniaxial pear-shaped molecules. For
these simulations, we construct a lattice model that can rep-
resent both nematic and polar order. In this model, the local
molecular orientation at lattice site i is represented by a unit
vector n̂i. If the system has nematic order, then the molecular
orientations tend to be aligned along a preferred axis; i.e.,

there is a nonzero order parameter �P2�n̂i · d̂��, where d̂ is the
overall director and P2 is the second Legendre polynomial. If
the system has polar order, then the molecular orientations
tend to point in a particular direction; i.e., there is a nonzero

order parameter �P1�n̂i · d̂��, where P1 is the first Legendre
polynomial. Note that the system can have nematic order
without polar order, but it cannot have polar order without
nematic order.

The lattice Hamiltonian must have four terms: one term
that favors nematic order, one term that favors polar order,
one term that gives a coupling between polar order and an
applied electric field, and a final term that gives a coupling
between polar order and splay of the nematic director. The
term favoring nematic order can be written simply as
−A�n̂i · n̂ j�2, summed over all pairs of neighboring sites i and
j, as in the Lebwohl-Lasher model �19�. The term favoring
polar order can be written even more simply as −B�n̂i · n̂ j�,
again summed over all pairs of neighboring sites i and j, as
in the Heisenberg model of magnetism. The coupling be-
tween polar order and an applied electric field can be written
as −E · n̂i, summed over i.

The coupling between polar order and nematic splay is
somewhat more subtle. For this coupling we need a lattice
expression for the local splay between neighboring sites i
and j. Our expression for the local splay should depend only
on the nematic director, and hence it should be invariant
under the transformation n̂→−n̂. We cannot describe splay
by the scalar � · n̂, because it is not invariant under that trans-
formation. Rather, we must describe splay by the vector
n̂�� · n̂�, which has the correct symmetry. In the following
calculation, we let Latin letters refer to lattice sites and
Greek letters refer to directions.

On a continuum basis, the splay vector n̂�� · n̂� can be
written in terms of the local nematic order tensor Q���r�, or
equivalently in terms of the dyad n��r�n��r�, as

n���n� =
1

2
����n�n�� + �n�n�����n�n�� − �n�n�����n�n��� .

�1�

Hence, a lattice approximation to the splay vector between
sites i and j can be written as

�n���n��ij =
1

2
�rij��nj�nj� − ni�ni��

+
ni�ni� + nj�nj�

2
rij��nj�nj� − ni�ni��

−
ni�ni� + nj�nj�

2
rij��nj�nj� − ni�ni��� , �2�

where r̂ij = �r j −ri� / 	r j −ri	 is the unit vector from site i to j on
the lattice. After some algebra, this expression simplifies to

�n̂�� · n̂��ij =
1

2
�n̂ j�r̂ij · n̂ j� − n̂i�r̂ij · n̂i� + n̂i�n̂i · n̂ j��r̂ij · n̂ j�

− n̂ j�n̂i · n̂ j��r̂ij · n̂i�� . �3�

Note that this expression is invariant under the transforma-
tions n̂i→−n̂i, n̂ j→−n̂ j, and i↔ j.

Now that we have found an expression for the local splay
vector, we can couple it with the local polar order. The cou-
pling term in the lattice Hamiltonian can be written as the dot
product of the splay between sites i and j with the average
polar order on these sites,

Vint = − C�n̂�� · n̂��ij ·
n̂i + n̂ j

2
. �4�

Simplifying with the use of Eq. �3�, the coupling term be-
tween splay and polar order in the Hamiltonian is

Vint = − C
1 + n̂i · n̂ j

2
�2

r̂ij · �n̂ j − n̂i� . �5�

Combining all these terms, our final expression for the lattice
Hamiltonian is

H = − �
�i,j�

�A�n̂i · n̂ j�2 + B�n̂i · n̂ j�

+ C
1 + n̂i · n̂ j

2
�2

r̂ij · �n̂ j − n̂i�� − �
i

E · n̂i. �6�

To compare with previous theoretical work, we note that
other investigators have studied models with both nematic
and polar order; for example, see Refs. �21–23�. Those mod-
els considered energy functions with a strong tendency to-
ward nematic order, as represented by our A term, and a
weak tendency toward polar order, as represented by our B
term. However, those models did not consider the coupling
between polar order and nematic splay, represented by our C
term. This coupling is the key feature of our lattice model,
which enables it to describe flexoelectricity.

At this point, we want to use the lattice Hamiltonian of
Eq. �6� to calculate the nematic order parameter �P2�, the
polar order parameter �P1�, and the average splay vector
�n̂�� · n̂�� as functions of the parameters A, B, and C and the
electric field E. In the following sections, we will do this
calculation through Monte Carlo simulations and mean-field
theory.
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III. MONTE CARLO SIMULATION

As a first step in exploring this model, we carry out Monte
Carlo simulations of a system of pear-like molecules inter-
acting with the lattice Hamiltonian of Eq. �6�. In these simu-
lations, we use a simple cubic lattice of size 20�20�20.
When an electric field is applied, it is in the z direction, so
that the molecules tend to align along z, with splay in the x
and y directions. The lattice has periodic boundary condi-
tions in z, but free boundaries in x and y, so that it can form
splay in those directions. �We have also done limited simu-
lations with a face-centered-cubic lattice, and the results are
consistent with the simulations presented here.�

The usual Metropolis algorithm was used for lattice up-
dates. In each Monte Carlo step, a lattice site is chosen ran-
domly, its orientation is changed slightly and the change
in energy �E is calculated. If �E�0 the move is accepted,
and if �E�0 the move is accepted with probability
exp�−�E /kBT�. Starting from the high-temperature isotropic
phase, the system is cooled down slowly with temperature
steps of �T=0.02. The final configuration at each tempera-
ture is taken as the initial configuration for the next lower
temperature. Typical runs take about 105 steps to come to
equilibrium, while runs near phase transitions take about 6
�105 steps. The nematic and polar order parameters and the
splay vector are calculated and time averaged during the pro-
duction cycle.

The nematic order parameter �P2� is calculated by the
usual method using the 3D nematic order tensor

Q�� =
1

N
�
i=1

N 
3

2
ni�ni� −

1

2
	��� , �7�

where � and �=x ,y ,z, and N is the total number of lattice
sites. The largest eigenvalue of this order tensor corresponds
to �P2�.

To calculate the polar order parameter �P1�, we assume
that polar order is oriented along the same axis as nematic
order, as expected for uniaxial molecules. The eigenvector
corresponding to the largest eigenvalue of the nematic order

tensor Q�� is the instantaneous director d̂. Hence, the polar
order parameter is calculated as the average dot product of
the director with the molecular orientation,

�P1� =
1

N
�
i=1

N

d̂ · n̂i. �8�

The splay vector is calculated from Eq. �3�, averaged over
the four bonds in the xy plane. The magnitude of this vector
gives the average angle between the molecular orientations
on neighboring lattice sites. For that reason, we report this
magnitude as ����.

Figure 2 shows plots of the order parameters �P2�, �P1�,
and ���� as functions of temperature for several values of
the interaction parameters. In Fig. 2�a�, for a small polar
coupling B and no applied electric field, we see an isotropic-
nematic transition at high temperature followed by a
nematic-polar transition at low temperature. At the isotropic-
nematic transition, the nematic order parameter goes from
zero to a nonzero value. Here the transition is rounded by

finite-size effects; we would expect a sharp first-order tran-
sition for an infinite system. Throughout the nematic tem-
perature range, the polar order parameter and splay are both
zero. At the nematic-polar transition, the polar order param-
eter becomes nonzero and this polar order induces an accom-
panying splay. The nematic order parameter decreases as the
system moves into the polar phase, because the splayed mo-
lecular orientation partially averages out the alignment, as
shown in the snapshot of Fig. 1�c�.

In Fig. 2�b�, for a larger polar coupling B, we see a direct
transition from the isotropic to the polar phase, with no in-
tervening nematic phase. In this case, the nematic and polar
order parameters both become nonzero at the same transition
temperature. Once again, the polar order induces a splay,
which inhibits the growth of the nematic order parameter.

The simulation results for the phase diagram are shown in
Fig. 2�c�. In this phase diagram, the vertical axis shows tem-
perature while the horizontal axis shows the polar coupling B
for a constant nematic coupling A. For small B the phase
diagram shows isotropic, nematic, and polar phases, with a
nematic range that decreases as B increases. At a sufficiently
large value of B, the nematic phase disappears and there is a
direct transition from isotropic to polar. Note that this phase
diagram is quite similar to the phase diagram found in recent
work on the two-dimensional �2D� isotropic, tetratic, and
nematic phases �24�.

The question is now: what happens to the nematic phase
when an electric field is applied? To answer this question,
Fig. 2�d� shows the simulation results for the same param-
eters as Fig. 2�a�, but in the presence of a small electric field.
In the high-temperature isotropic phase, the field induces
some polar and nematic order, but this effect is very small.
However, in the nematic phase, the field induces a more
substantial polar order and that polar order induces a splay in
the nematic director, i.e., a converse flexoelectric effect. Both
the polar order and the splay are quite temperature depen-
dent, increasing as the system approaches the nematic-polar
transition temperature, as would be expected for a divergent
susceptibility above a second-order transition. The nematic-
polar transition is rounded off by the applied field and the
polar order parameter and splay saturate in the low-
temperature polar phase.

To provide further insight into the effect of an applied
electric field, Fig. 3 shows the splay as a function of tem-
perature for several values of the field. Within the nematic
phase, the splay increases as the electric field increases, as
expected for the converse flexoelectric effect. This trend is
reasonable because an increasing electric field enhances po-
lar order. For small field the splay is quite sensitive to tem-
perature, but for large field it becomes less temperature de-
pendent, as the induced polar order grows larger and
approaches saturation. In the low-temperature polar phase,
the splay shows the opposite trend with electric field; it now
decreases as the field increases. This trend is reasonable be-
cause an increasing electric field cannot enhance the polar
order, which is already saturated; it only aligns the direction
of polar order. This alignment reduces the induced splay,
since splay necessarily involves some misalignment of the
molecular orientation.

For comparison, Fig. 4 presents a plot of splay as a func-
tion of temperature for several values of the interaction co-
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efficient C. This graph shows that the splay increases as C
increases, over the full temperature range, in all phases. This
result is reasonable because the coefficient C represents the
flexoelectric coupling between polar order and splay.

As a final point, note that the behavior presented here can
only occur in the limit of small splay ��
� /N, where N is

the system size. In the opposite limit ���� /N, the system
is too large for one single splay from side to side. Instead, it
must break up into modulated structures consisting of re-
gions of splay separated by domain walls. These modulated
structures might be splay stripes or even more complex two-
or three-dimensional arrangements of splay cells �25�. We
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FIG. 2. Monte Carlo simulation results for the order parameters �P1�, �P2�, and ���� as functions of temperature T, for different values
of the interaction parameters chosen to show various types of transitions: �a� zero-field results for A=1.5, B=0.09, and C=0.3, showing the
isotropic-nematic and nematic-polar transitions. �b� Zero-field results for A=1.5, B=0.4, and C=0.3, showing the direct isotropic-polar
transition. �c� Phase diagram for zero field. �d� Simulation with applied electric field E=0.06, for the same parameters as in part �a�, showing
the induced polar order and splay in the nematic phase.
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FIG. 3. Variation in splay as a function of temperature for sev-
eral values of the applied electric field, using the same numerical
parameters as in Fig. 2�a�.
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FIG. 4. Variation in splay as a function of temperature for sev-
eral values of the interaction coefficient C, with a small field
E=0.06.
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have observed such modulated structures in our simulations,
but we have not explored them in detail because they are not
likely to occur in experiments, where the magnitude of splay
is generally small.

IV. MEAN-FIELD CALCULATION

In this section, we discuss two approximate analytic ap-
proaches to solve the problem. First, we map the interaction
onto an Ising model and use this Ising model to calculate the
splay and polar order as functions of temperature and electric
field. Second, we present a more general mean-field calcula-
tion with full rotational degrees of freedom and use it to
calculate the full phase diagram with isotropic, nematic, and
polar phases.

A. Ising model

For a simple Ising-type model of the splay flexoelectric
effect, we suppose that the system has well-defined nematic
order, with variable amounts of splay and polar order. Con-
sider a particular site i surrounded by six nearest neighbors
on a cubic lattice. We suppose that site i has its director
along the z axis, as do the two neighbors above and below,
while the four nearest neighbors in the xy plane have direc-
tors that are splayed outward by a small angle ��. The polar
order at any site j is represented by an Ising spin variable
 j = �1, which indicates whether the molecular orientation
is pointing up or down along the local director. Thus, the
central site i has the molecular orientation n̂i=i�0,0 ,1�,
while the six neighbors have the orientations n̂+x
=+x�sin �� ,0 ,cos ���, n̂−x=−x�−sin �� ,0 ,cos ���, n̂+y
=+y�0,sin �� , cos ���, n̂−y=−y�0,−sin �� , cos ���, n̂+z
=+z�0,0 ,1�, and n̂−z=−z�0,0 ,1�.

We now substitute these expressions for the molecular
orientations into the lattice Hamiltonian of Eq. �6�. As usual
in mean-field theory, we assume that all the neighbors of site
i have polar order given by � j�=M. �This quantity is called
P1 in the other sections; here we use the symbol M to em-
phasize the analogy with the Ising magnetization.� The mean
potential experienced by site i, expanded to second order in
the small splay ��, is then

Vmean = − A�6 − 4����2� − BMi�6 − 2����2�

− 2C���i + M� − Ei. �9�

Hence, the effective field acting on the Ising spin i is

Eeff = E + 6BM + 2C�� − 2BM����2. �10�

As a result, the polar order parameter must satisfy the self-
consistency equation

M = �i� = tanh
Eeff

kBT
�

= tanh
E + 6BM + 2C�� − 2BM����2

kBT
� . �11�

Furthermore, minimization of the mean potential over the
splay �� gives

�� =
CM

2A + BM2 . �12�

Solving Eqs. �11� and �12� simultaneously gives the equilib-
rium values of the splay �� and polar order M, as functions
of electric field E, temperature T, and energetic parameters
A, B, and C.

To calculate the response to an electric field in the nem-
atic phase, we assume that E, M, and �� are all small, and
expand Eqs. �11� and �12� to linear order in these quantities.
From these expansions we obtain

M =
E

kBT − �6B + C2/A�
, �13�

�� =
CE

2A�kBT − �6B + C2/A��
. �14�

Note that Eq. �13� gives the polar order parameter induced
by an applied electric field, while Eq. �14� gives the converse
flexoelectric effect induced by the field. Both of these re-
sponses increase as the temperature decreases toward the
second-order nematic-polar transition at the temperature

kBTNP = 6B +
C2

A
. �15�

At this transition, they diverge as �T−TNP�−�, with critical
exponent �=1, as expected for the susceptibility to an ap-
plied field, in mean-field theory for the Ising model.

For a more precise calculation, we solve Eqs. �11� and
�12� numerically as functions of temperature and field. The
numerical results for splay �� and polar order M are shown
in Fig. 5. As in the approximate analytic calculation above,
we see a second-order nematic-polar transition. The high-
temperature nematic phase has no polar order or splay with-
out a field, but an applied field induces both of these quan-
tities. By contrast, the low-temperature polar phase has both
spontaneous polar order and spontaneous splay, and they
both increase moderately when a field is applied.

Although the Ising model is successful in explaining some
features of our Monte Carlo simulations, it is incomplete
because it assumes perfect nematic order—the molecules can
have only two possible orientations, up and down. It cannot
describe the behavior of the nematic order parameter as a
function of temperature. For that reason, we proceed to a
more general mean-field theory, in which each molecule has
full rotational degrees of freedom.

B. General mean-field calculation

In mean-field theory, the free energy can be written as

F = U − TS = �H� + kBT�log �� , �16�

averaged over the single-particle distribution function �.
Thus, our goal is to express the single-particle distribution
function in terms of some variational parameters, calculate
the energetic and entropic terms in the free energy, and then
minimize the free energy over those variational parameters.

For this mean-field calculation, we write the molecular
orientation at each lattice site in terms of the polar angle �i
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and azimuthal angle �i with respect to the local director. We
assume the distribution function depends only on the polar
angle �i, and hence write

���i� =
exp�v1P1�cos �i� + v2P2�cos �i��


0

�

exp�v1P1�cos �i� + v2P2�cos �i��d�i

, �17�

where v1 and v2 are variational parameters. The order param-
eters are then �P1�=�0

�P1�cos ������d� and �P2�
=�0

�P2�cos ������d�, and the partition function is Z
=�0

�exp�v1P1�cos ��+v2P2�cos ���d�. The entropic contribu-
tion to the free energy is therefore,

− TS = kBT�log ���i�� = kBT�v1�P1� + v2�P2� − log�Z�� ,

�18�

per lattice site.
As in the previous section, we suppose that site i has its

director along the z axis, as do the two neighbors above and
below, while the four nearest neighbors in the xy plane have
directors that are splayed outward by a small angle ��. To
calculate the average energy, we combine our distribution
function of Eq. �17� with the lattice Hamiltonian of Eq. �6�.
After averaging over all the angles, neglecting terms involv-
ing the third-order Legendre polynomials, and expanding to
second order in the small splay ��, we obtain

�H� = − A − A�P2�2�2 − 2����2� − B�P1�2�3 − ����2�

− C�P1����5 + 16�P2�
15

� − E�P1��1 −
����2

6
� ,

�19�

per lattice site.
We now have an expression for the total free energy

F = − A − A�P2�2�2 − 2����2� − B�P1�2�3 − ����2�

− C�P1����5 + 16�P2�
15

� − E�P1��1 −
����2

6
�

+ kBT�v1�P1� + v2�P2� − log�Z�� , �20�

per lattice site. In this expression, note that �P1�, �P2�, and Z
are all determined by the parameters v1 and v2 in the distri-
bution function. Hence, the free energy is a function of just
three variational parameters: v1, v2, and ��. Thus, in the
mean-field calculation, we must minimize the free energy
numerically with respect to those three parameters. After this
minimization, we can calculate the order parameters �P1� and
�P2�, and hence determine whether the system is in an iso-
tropic, nematic, or polar phase.

Figure 6 shows the numerical mean-field results for the
order parameters �P1� and �P2� and splay ��, as well as a
complete phase diagram as a function of temperature T. For
a small polar interaction B=0.09 there are two transitions,
first from the high-temperature isotropic phase ��P1�
=0, �P2�=0� to the intermediate nematic phase ��P1�
=0, �P2��0�, and then from the nematic phase to the low-
temperature polar phase ��P1��0, �P2��0�. The isotropic-
nematic transition is first order, while the nematic-polar tran-
sition is second order. On increasing the polar interaction
strength B, the polar phase becomes stable even at higher
temperature. For B=0.36, these two transitions merge into a
single first-order transition directly from the high-
temperature isotropic phase to the low-temperature polar
phase. If E�0, the polarization and splay are nonzero even
in the nematic phase and scale with the magnitude of the
field. For nonzero field, the magnitude of the splay increases
on reducing temperature and is enhanced greatly near the
transition to the polar phase.

Note that the numerical mean-field results of Fig. 6 are
very similar to the Monte Carlo simulation results of Fig. 2,
both in the overall phase diagram and in the splay and polar
response to an electric field. This similarity demonstrates that
the mean-field theory captures the essential physics of this
model.

V. DISCUSSION

In conclusion, we have developed a lattice model for
splay flexoelectricity in a system of uniaxial pear-shaped
molecules. This model predicts a phase diagram showing
isotropic, nematic, and polar phases, and it further predicts a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

T

〈∆
θ〉

E = 0.0
E = 0.06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

T

〈M
〉

E = 0.0
E = 0.06

(b)(a)

FIG. 5. Numerical mean-field calculations for the Ising mapping, showing the splay and polar order as functions of temperature T, for
parameters A=1.5, B=0.09, and C=0.3, for zero and nonzero electric field.
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converse flexoelectric effect in the nematic phase. The con-
verse flexoelectric effect is proportional to the applied elec-
tric field and it increases dramatically as the temperature de-
creases toward the nematic-polar transition. Indeed, we can
regard this effect as a susceptibility to an applied field, which
diverges at the second-order transition to a polar phase. Thus,
flexoelectricity is not just a molecular effect arising from the
microscopic interaction of liquid crystals with a field. Rather,
it can be a statistical effect associated with the response of
correlated volumes of molecules, which increases as one ap-
proaches a polar phase.

The recent experiments of Harden et al. �2,3� have found
an anomalously large bend �rather than splay� flexoelectric
effect in systems of bent-core liquid crystals. We speculate
that the same considerations discussed in this paper can ex-
plain the large bend flexoelectric coefficient in those experi-
ments. The bent-core liquid crystal should be close to a polar
phase, with order in the transverse dipole moments of the

molecules. As a result, there should be large correlated vol-
umes of molecules, leading to a high susceptibility to an
applied field, which induces both polar order and bend. The
detailed theoretical model for bend flexoelectricity will nec-
essarily be more complex than the model for splay flexoelec-
tricity presented here, because the bent-core molecules are
not uniaxial and hence their orientations must be character-
ized by two vectors or three Euler angles. This model for
bend flexoelectricity will be the subject of a future paper.
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